MIT PI: Jennifer L.M. Rupp, Department of Materials Science and Engineering
SkT PI: Artem M. Abakumov, Center for Energy Science and Technology
To achieve high power and energy densities with long cycle life for all-solid-state Li-ion batteries (SSBs), electrolyte needs to be made thinner, and the interfacial phase of the electrolyte with electrodes needs to be more stable. The proper modulation of interface can provide fast Li-ion transfer at cathode/electrolyte and suppression of Li dendrite growth at anode/electrolyte yielding better stability. Here, we propose an atomic-level fundamental analysis on the interface of Li-garnet “electrolyte film” and electrodes (oxide based cathode and Li-metal anode) employing advanced transmission electron microscopy (TEM) techniques and electrochemical analysis. Intrinsic atomic structure change during cell fabrication and cycling operation will be probed for Li-garnet electrolytes, which was recently developed for higher Li conductivity now as ceramic films, as controlling interface and processing on the SSB performance have not been investigated yet. Through a collaboration of MIT (Rupp group) and Skoltech (Abakumov group), we will explore the correlation of nanoscopic interface structure with Li-ion transport across the interface and phase stability. Afterward, we will study the effect of introducing barrier layers at the cathode interface to the Li-transport and phase stability. We will also study the Li dendrites growth at the Li-metal anode interface towards nanostructure controlled Li-garnet films, which remains unexplored in the field so far. The accomplishments will offer new insights and engineering strategies to integrate fastest conducting Li-garnet films as an alternative to the current state-of-art solid electrolyte of LiPON, and an opportunity to replace the traditional polymer electrolyte with thinner films for future SSBs.