MIT PI: Fikile Brushett, Department of Chemical Engineering
SkT PI: Keith Stevenson, Center for Energy Science and Technology
Low cost high performance energy storage technology is needed to facilitate widespread deployment of intermittent renewable resources as well as to improve grid resiliency and flexibility. Redox flow batteries (RFBs) are particularly appealing due to their independent scaling of power and energy, long operational lifetimes, and simplified manufacturing. Further cost reductions are needed for ubiquitous adoption. The use of nonaqueous electrolytes and incorporation of solidstate boosters, either as flowable suspensions or in packed-bed tanks, offers a pathway to significantly greater energy densities than aqueous RFBs, greater durability than present-day nonaqueous organic RFBs, and more robust operation and easier maintenance than Li-ion batteries, all of which, reduce system costs. Building on our previous collaborative work developing freestanding low-resistance composite polymer-inorganic single-ion conductors for nonaqueous RFBs, we aim to develop charge-dense half-cells using low-cost inorganic solid-state boosters and low-to-moderate concentrations of redox shuttles to promote facile charge transfer at solidelectrolyte interfaces. This proposal combines state-of-the-art single particle electrochemistry, mathematical modeling and simulation of complex electroactive fluids, and electrochemical engineering of flow reactors to develop and advance new classes of flowable energy storage that blur traditional boundaries between flow and intercalation batteries. Successful implementation of this project will establish the foundational scientific and engineering knowledge needed to develop and commercialize disruptive RFB technologies to meet the emerging energy storage demands of future diversified energy networks.